Самодельный унч

Изготовление печатной платы

Мы описали схему, которую нужно использовать, теперь изготовим важнейший элемент, а именно печатную плату.

Необходимо взять стеклотекстолит, ширина которого должна быть 2 см, а длина 4 см. Для начала обезжирьте поверхность и тщательно ее отшлифуйте. Затем распечатав представленную ниже схему, перенесите ее на кусочек стеклотекстолита, соблюдая габариты. Рекомендуется использовать метод ЛУТ.

Рисунок должен полностью отпечататься на поверхности заготовки, если не получилось сделать это с первого раза, можно дорисовать прерванные дорожки о руки.

Приготавливаем раствор, в котором будем травить стеклотекстолит. Вам необходимо взять 2 столовые ложки лимонной кислоты и 6 столовых ложек перекиси водорода и тщательно их перемешать. Для ускорения процесса перемешивания добавляем в щелочной раствор щепотку соли. Соль не участвует в процессе растворения.

Подождав немного убедитесь, что весь лишний медный слой растворился. Затем необходимо достать заготовку из емкости и промыть ее в проточной воде. При помощи ацетона удаляем чернила с платы.

RС-фильтры

RС-фильтр высоких частот

Схема RC-фильтра верхних (высоких) частот и его амплитудно-частотная характеристика показаны на рис. 1.

Рис. 1 — Схема и амплитудно-частотная характеристика высокочастотного CR-фильтра.

В этой схеме входное
напряжение прикладывается и к резистору,
и к конденсатору. Выходное же напряжение
снимается с сопротивления. При уменьшении
частоты сигнала возрастает реактивное
сопротивление конденсатора, а
следовательно, и полное сопротивление
цепи. Поскольку входное напряжение
остается постоянным, то ток, протекающий
через цепь уменьшается. Таким образом,
снижается и ток через активное
сопротивление, что приводит к уменьшению
падения напряжения на нем.

Фильтр характеризуется
затуханием, выраженным в децибелах,
которое он обеспечивает на заданной
частоте. RC-фильтры
рассчитываются таким образом, чтобы на выбранной частоте среза коэффициент передачи снижался приблизительно на 3
дБ (т.е. составлял 0,707 входного значения сигнала). Частота среза фильтра по уровню — 3 дБ определяется по формуле:

RС-фильтр низких частот

Фильтр низких частот имеет аналогичную структуру,
только емкость и сопротивление там
меняются местами. Амплитудно-частотную
характеристику такого фильтра можно
представить как зеркальное отображение
АЧХ предыдущего.

    

Рис. 2 — Схема и амплитудно-частотная характеристика низкочастотного RC-фильтра.

В этой цепи входное
напряжение также прикладывается и к
резистору, и к конденсатору, но выходное
напряжение снимается с конденсатора.
При увеличении частоты сигнала реактивное
сопротивление конденсатора, а
следовательно, и полное сопротивление
уменьшаются. Однако, поскольку это
полное сопротивление состоит из
реактивного и фиксированного активного
сопротивлений, его значение уменьшается
не так быстро, как реактивное сопротивление.
Следовательно, при увеличении частоты
снижение реактивного сопротивления (относительно полного сопротивления) приводит к уменьшению выходного напряжения. Частота среза этого фильтра по уровню -3 дБ также определяется по формуле предыдущего фильтра.

Рассмотренные
выше фильтры представляют собой RC-цепи,
которые характеризуются тремя параметрами,
а именно: активным, реактивным и полным
сопротивлениями. Обеспечиваемая этими
RC-фильтрами величина затухания зависит от отношения
активного или реактивного сопротивления
к полному сопротивлению.

При расчете любого RC-фильтра можно задать номинал либо резистора, либо конденсатора и вычислить значение другого элемента фильтра на заданной частоте среза. При практических расчетах
обычно задают номинал сопротивления,
поскольку он выбирается на основании
других требований. Например, сопротивление
фильтра является его выходным или
входным полным сопротивлением.

Полосовой RC-фильтр

Соединяя фильтры
верхних и нижних частот, можно создать
полосовой RC-фильтр,
схема и амплитудно-частотная характеристика
которого приведены на рис. 3.

Рис. 3 — Схема и АЧХ полосового RC-фильтра.

На схеме рис. 2. R1 — полное входное сопротивление; R2
полное выходное сопротивление, а частоты
низкочастотного и высокочастотного
срезов определяются по формулам:

Следует отметить,
что значение верхней частоты среза
()
должно быть по крайней мере быть в 10 раз
больше нижней частоты среза (),
поскольку только в этом случае
полосно-пропускающий фильтр будет
работать достаточно эффективно.

Многозвенные RC-фильтры

Одиночный RC-фильтр
не может обеспечить достаточного
подавления сигналов вне заданного
диапазона частот, поэтому для формирования
более крутой переходной области довольно
часто используют многозвенные фильтры
(рис. 4, 5). Частота среза многозвенного
фильтра определяется по формуле ВЧ, НЧ
RC-фильтра.
Добавление каждого звена приводит к
увеличению затухания на заданной частоте
среза примерно на 6 дБ.

Рис. 4 — Многозвенный высокочастотный фильтр

Рис. 5 — Многозвенный низкочастотный фильтр

Построение цифрового фильтра с конечной импульсной характеристикой

Вступление издалека

Недавно передо мной встала достаточно интересная задача, с которой я раньше никогда не сталкивался — борьба с шумом. Мы принимали сигнал с датчиков на аналогово-цифровой преобразователь (АЦП) А так как данная тема для меня была (хотя и сейчас есть кое-где) темным лесом, я пошел мучить вопросами гугл, мне показалось освещена эта тема не очень подробно и доступно, поэтому решил написать статью с примером разработки и готовым исходником.

Ближе к делу

Цифровые фильтры могут быть двух видов – с конечной и с бесконечной импульсной характеристикой (КИХ и БИХ). Для решения моей задачи подходит КИХ-фильтр, поэтому про него и расскажу. Для начала посмотрим как же он работает:

Здесь показан пример фильтра нижних частот, как видно на рисунке, этот фильтр пропускает нижние частоты, а все остальные старается отсечь (подавление), или хотя бы ослабить (переход). Отклонения в полосе пропускания и полосе подавления выбираются в зависимости от принимаемого сигнала, но при использовании различных весовых функций, на них могут накладываться определенные ограничения. Например, если используется весовая функция Хэмминга, то эти отклонения будут равны между собой. Ширина полосы перехода ∆F зависит от длины фильтра и от весовой функции (для функции Блэкмена ∆F=5,5|N).

Работает фильтр довольно просто: фильтр получает значения, с помощью коэффициентов преобразует их и выдаёт выходную последовательность, тогда с формулой самого фильтра всё понятно:

Она реализуется через цикл, но постойте, а где же взять нужные коэффициенты? Вот тут-то как раз и зарыта собака (и не одна).

Параметры фильтра

Естественно для разных фильтров нужны разные коэффициенты, и для этого нужно определиться с параметрами фильтра, это обычно сначала делается теоретически (с умным видом прикидываем какая у нашего сигнала частота, потом частоты, которые надо отсеивать), а потом изучаем АЧХ реальных измерений (и осознаем, как сильно мы ошибались). По этим АЧХ мы определяемся с идеальной частотной характеристикой (какие частоты проходят свободно, какие мы убираем и как сильно), теперь нам нужна идеальная импульсная характеристика её можно посчитать как Фурье-образ от идеальной частотной: где H_D(w) – идеальная характеристика.

Но можно пойти и по более простому пути – есть уже заранее вычисленные идеальные импульсные характеристики, например для фильтра нижних частот формула выглядит следующим образом:

где fc и wc – частота среза.

Итак, осталось уже немного идеал идеалом, а мы имеем дело с практикой, и нам нужна «реальная» импульсная характеристика. Для её расчета нам понадобится весовая функция w(n), их есть несколько разновидностей, в зависимости от требований к фильтру (Хэмминга, Хеннинга, Блэкмена, Кайзера, о них не говорю, ибо статья и так большая), в нашем случае я использую функцию Блэкмена:

где N – длина фильтра, т.е. количество коэффициентов.

Теперь надо перемножить идеальную импульсную характеристику и весовую функцию:

Финишная прямая

Теперь мы готовы рассчитать выходные значения, по формуле фильтра, она самая первая в этой статье, ну вот и всё, в завершение привожу исходный код фильтра: void Filter (const double in[], double out[], int sizeIn) { const int N = 20; //Длина фильтра long double Fd = 2000; //Частота дискретизации входных данных long double Fs = 20; //Частота полосы пропускания long double Fx = 50; //Частота полосы затухания long double H = {0}; //Импульсная характеристика фильтра long double H_id = {0}; //Идеальная импульсная характеристика long double W = {0}; //Весовая функция //Расчет импульсной характеристики фильтра double Fc = (Fs + Fx) / (2 * Fd); for (int i=0;i=0) out+= H*in; } }При подготовке статьи использовались: Основные характеристики и параметры фильтров. analogiu.ru/6/6-5-2.html Айфичер Э. Джервис Б. Цифровая обработка сигналов. Практический подход. 2-е издание

Кроссовер акустический — схемы для аудио колонок и сабвуфера своими руками

Самодельный акустический кроссовер применяемый в домашних колонках или сабвуферах изготовить собственными руками не представляет никакой сложности. Конечно, для этого нужно иметь хоть какие то навыки и прямые руки.

Зачем нужен кроссовер акустический в звуковой системе

Этот электронный прибор собранный по типу фильтров и играет важную роль в акустике. А предназначен он, чтобы разделять поступающий от источника сигнал на несколько рабочих частотных диапазонов используемыми динамиками. Кроссовер практически выполняет работу фильтра по отсеиванию ненужной частоты, тем самым фильтруя весь звуковой тракт.

Подключение кроссовера к колонке

В качестве простого примера здесь можно привести высокочастотные динамики, называемые пищалками. Так вот, если бы в аудио колонках не было установлено акустических кроссоверов, то пищалки просто бы захлебнулись всем спектром средних и особенно басовых частот хлынувшим на них. Ясное дело, что в таком случае говорить о каком то детализированном воспроизведении звука говорить не приходится. Динамические излучатели высокочастотного диапазона не могут воспроизводить другие частоты, кроме высоких.

Какие бывают типы кроссоверов

Аудио кроссоверы, это специальные электронные приборы в составе акустических систем, по типу они бывают активного и пассивного действия, двухполосные и трехполосные.

Положительные и отрицательные стороны пассивного фильтра частот

Установка и подключение конструкции частотного фильтра в колонках как правило выполняется в самой ближней точке от динамика.

Из этого следует, что при таком варианте, хватит только одного усилителя мощности, чтобы получить качественный звук. Такая схема использования пассивного фильтра говорит о его положительной стороне в работе акустики.

В продаже акустические фильтры бывают как в виде отдельных модулей так и встроенных в акустику, в основном расчитанные на две или три полосы пропускания. К недостаткам таких электронных устройств пассивного действия можно отнести их неспособность выдерживать длительную максимальную нагрузку. В случае долговременного использования пассивного кроссовера в режиме пиковой нагрузки, чревато входом его из строя.

Кроссовер акустический активного типа, его плюсы и минусы

Активный кроссовер в противовес пассивного имеет возможность корректного выбора и прецизионной настройки частоты среза. В частности, именно эта функция в устройстве считается наиболее ценной в плане создания качественного звука.

Широтно-импульсная модуляция в частотной области

В предыдущей статье мы видели, что сигнал с широтно-импульсной модуляцией можно «сгладить» до достаточно стабильного напряжения в диапазоне от уровня земли до высокого логического уровня (например, 3,3 В); сглаживание выполняется простым фильтром нижних частот. Таким образом, мы можем реализовать цифро-аналоговое преобразование, используя встроенное программное обеспечение или аппаратное обеспечение для изменения коэффициента заполнения в ШИМ сигнале в соответствии со следующей формулой:

\(\text{Необходимое напряжение ЦАП}=A\times \text{коэффициент заполнения}\)

где A («амплитуда») – напряжение высокого логического уровня.

Давайте начнем наше более подробное исследование ЦАП на базе ШИМ с рассмотрения представления ШИМ сигнала в частотной области. Вот схема LTspice:

Рисунок 1 – Схема моделирования в LTspice

Как видно из характеристик PULSE, ширина импульса составляет 5 мкс, а период – 10 мкс. Таким образом, коэффициент заполнения составляет 50%, а несущая частота ШИМ сигнала составляет 100 кГц

Также обратите внимание, что A = 3,3 В, а время нарастания и спада составляет 10 нс. Вот сигнал во временной области:

Рисунок 2 – Представление ШИМ сигнала во временной области

А вот и результаты быстрого преобразования Фурье (БПФ):

Рисунок 3 – Представление рассматриваемого ШИМ сигнала в частотной области

Вы можете узнать в этой диаграмме спектр общего вида, который мы ожидаем увидеть от прямоугольного сигнала, то есть всплеск на несущей частоте, а затем уменьшающиеся по амплитуде гармоники на частотах, равных несущей частоте, умноженной на 3, несущей частоте, умноженной на 5, и так далее. Однако БПФ LTspice не показывает нам постоянной составляющей, которая не равна нулю, потому что этот прямоугольный сигнал не симметричен относительно оси x. Я изменил следующий график, чтобы включить компонент постоянной составляющей:

Рисунок 4 – Измененное представление в частотной области, учитывающее наличие постоянной составляющей

Итак, нам нужны стабильные 1,65 В, расположенные в левом краю, и нам не нужен этот проблемный всплеск на частоте 100 кГц (а также все более высокочастотные всплески). В этот момент вы, вероятно, можете понять, зачем мы используем фильтр нижних частот в ЦАП на базе ШИМ: фильтр сохраняет компонент постоянной составляющей, подавляя всё остальное. Если бы у нас был идеальный фильтр, у нас было бы совершенно стабильное напряжение ЦАП – просто оглянемся на предыдущий график и представим фильтр с АЧХ в виде «кирпичной стены», которая на частоте 50 кГц переходит от отсутствия затухания к полному затуханию. Все не связанные с постоянной составляющей компоненты сигнала будут устранены, и мы получим постоянное напряжение на уровне 1,65 В.

В этот момент вам может быть интересно узнать, как меняется спектр при изменении ширины импульса. Что если частотные составляющие перемещаются так, что фильтр нижних частот становится менее эффективным? Рассмотрим следующие два результата БПФ для коэффициентов заполнения 10% и 90%:

Рисунок 5 – Спектр ШИМ сигнала с коэффициентом заполнения 10%Рисунок 6 – Спектр ШИМ сигнала с коэффициентом заполнения 90%

Спектр, безусловно, изменяется относительно коэффициента заполнения 50%, но одно не меняется: первый всплеск находится на несущей частоте. Таким образом, независимо от коэффициента заполнения, мы имеем довольно большую полосу частот (в данном случае от постоянного напряжения до 100 кГц), в которой фильтр нижних частот может переходить от отсутствия затухания к существенному затуханию.

Описание работы схемы усилителя

Стерео сигнал подается на разъем In через C1 (100nF) и R1 (2,2 М) на первом канале и C2 (100nF) и R2 (2,2 М), в другом канале. Затем он поступает на вход операционного усилителя U1A (TL074). Потенциометром P1 (220k), работающем в цепи обратной связи усилителя U1A, выполняется регулировка усиления всей системы. Далее сигнал подается на фильтр второго порядка с элементами U1B (TL074), R3 (68k), R4 (150к), C3 (22nF) и C4 (4,7 nF), который работает как фильтр Баттерворта. Через цепь C5 (220nF), R5 (100k) сигнал поступает на повторитель U1C, а затем через C6 (10uF) на вход усилителя U2 (TDA2030).

Конденсатор С6 обеспечивает разделение постоянной составляющей сигнала предусилителя от усилителя мощности. Резисторы R7 (100k), R8 (100k) и R9 (100k) служат для поляризации входа усилителя, а конденсатор C7 (22uF) фильтрует напряжение смещения. Элементы R10 (4.7 k), R11 (150к) и C8 (2.2 uF) работают в петле отрицательной обратной связи и имеют задачу формирования спектральной характеристики усилителя. Резистор R12 (1R) вместе с конденсатором C9 (100nF) формируют характеристику на выходе. Конденсатор C10 (2200uF) предотвращает прохождение постоянного тока через динамик и вместе с сопротивлением динамика определяет нижнюю граничную частоту всего усилителя.

Полезное: Знаменитый усилитель мощности класса A First Watt Нельсон Пасс

Защитные диоды D1 (1N4007) и D2 (1N4007) предотвращают появление всплесков напряжений, которые могут возникнуть в катушке динамика. Напряжение питания, в пределах 18-30 В подается на разъем Zas, конденсатор C11 (1000 — 4700uF) — основной фильтрующий конденсатор (не экономьте на его ёмкости). Стабилизатор U3 (78L15) вместе с конденсаторами C12 (100nF), C15 (100uF) и C16 (100nF) обеспечивает подачу напряжения питания 15 В на микросхему U1. Элементы R13 (10k), R14 (10k) и конденсаторы C13 (100uF), C14 (100nF) образуют делитель напряжения для операционных усилителей, формируя половину напряжения питания.

Принципиальная схема ФНЧ

Схема фильтра для сабвуфера показана на рисунке. Работает он на основе двух операционных усилителей U1-U2 (NE5532). Первый из них отвечает за суммирование и фильтрацию сигнала, в то время как второй обеспечивает его кэширование.

Принципиальная схема ФНЧ к сабу

Стереофонический входной сигнал подается на разъем GP1, а дальше через конденсаторы C1 (470nF) и C2 (470nF), резистора R3 (100k) и R4 (100k) попадает на инвертирующий вход усилителя U1A. На этом элементе реализован сумматор сигнала с регулируемым коэффициентом усиления, собранный по классической схеме. Резистор R6 (27k) вместе с P1 (50k) позволяют провести регулировку усиления в диапазоне от 0.5 до 1.5, что позволит подобрать усиления сабвуфера в целом.

Резистор R9 (100k) улучшает стабильность работы усилителя U1A и обеспечивает его хорошую поляризацию в случае отсутствия входного сигнала.

Сигнал с выхода усилителя попадает на активный фильтр нижних частот второго порядка, построенный U1B. Это типичная архитектура Sallen-Key, которая позволяет получить фильтры с разной крутизной и амплитудной. На форму этой характеристики напрямую влияют конденсаторы C8 (22nF), C9 (22nF) и резисторы R10 (22k), R13 (22k) и потенциометр P2 (100k). Логарифмическая шкала потенциометра позволяет добиться линейного изменения граничной частоты во время вращения ручки. Широкий диапазон частот (до 260 Гц) достигается при крайнем левом положении потенциометра P2, поворачивая вправо вызываем сужения полосы частот до 50 Гц. На рисунке далее показана измеренная амплитудная характеристика всей схемы для двух крайних и среднего положения потенциометра P2. В каждом из случаев потенциометр P1 был установлен в среднем положении, обеспечивающим усиление 1 (0 дб).

Полезное: Усилитель для динамического микрофона

Сигнал с выхода фильтра обрабатывается с помощью усилителя U2. Элементы C16 (10pF) и R17 (56k) обеспечивают стабильную работу м/с U2A. Резисторы R15-R16 (56k) определяют усиление U2B, а C15 (10pF) повышает его стабильность. На обоих выходах схемы используются фильтры, состоящие из элементов R18-R19 (100 Ом), C17-C18 (10uF/50V) и R20-R21 (100k), через которые сигналы поступают на выходной разъем GP3. Благодаря такой конструкции, на выходе мы получаем два сигнала сдвинутых по фазе на 180 градусов, что позволяет осуществлять прямое подключение двух усилителей и усилителя с мостовой схемой.

В фильтре используется простой блок питания с двухполярным напряжением, основанный на стабилитронах D1 (BZX55-C16V), D2 (BZX55-C16V) и двух транзисторах T1 (BD140) и T2 (BD139). Резисторы R2 (4,7k) и R8 (4,7k) представляют собой ограничители тока стабилитронов, и были подобраны таким образом, чтобы при минимальном напряжении питания ток составлял около 1 мА, а при максимальном был безопасен для D1 и D2.

Элементы R5 (510 Ом), C4 (47uF/25V), R7 (510 Ом), C6 (47uF/25V) представляют собой простые фильтры сглаживания напряжения на базах T1 и T2. Резисторы R1 (10 Ом), R11 (10 Ом) и конденсаторы C3 (100uF/25V), C7 (100uF/25V) представляют собой также фильтр напряжения питания. Разъем питания — GP2.

Фильтр 3-го порядка для ЦАП на гираторе

Итак, разобрались с вопросами, возникающими в первую очередь. Теперь наконец перейдем к самой схеме. Она представлена на следующем рисунке.

Фазовая характеристика на выходе получившегося фильтра все же немного загибается к концу. Поэтому частота среза была выбрана такой, чтобы в слышимом частотном диапазоне фазовые искажения были минимальными.

Частота среза была выбрана равной 40 кГц. При этом фазовые искажения в диапазоне 1-10кГц, для указанной схемы, составили менее 0.1%. А это самый слышимый частотный диапазон. Загиб на частотах 10-20кГц минимален. Это потрясающий результат для фильтра в звуковых цепях.

На следующем графике приведена АЧХ сигнала после фильтра и относительная ошибка фазы (мелкие коллебания фазовой характеристики). Большие колебания ошибки фазы в области низких частот на самом деле составляют лишь 0.02 градуса. Да и в этом диапазоне наше ухо к фазовым искажениям практически не чувствительно.

Еще одним плюсом применения фильтра на гираторе для звука является то, что сигнал не проходит непосредственно через операционный усилитель. ОУ лишь вносит свой вклад в звук, но влияет меньше, чем в случае обычных активных фильтров.

Тем не менее качество операционного усилителя, как и качество всех остальных компонентов все равно имеет большое значение.

В авторском варианте были использованы AD8066. Это прецизионные скоростные ОУ с частотой пропускания до 145МГц и скоростью нарастания сигнала 180 В/мкс. На форумах эти ОУ часто хвалят и за их «звуковые» свойства. Они прекрасно продемонстрировали себя и в этой роли.

Предназначение

Сделать фильтр для сабвуфера

Фильтр или кроссовер(см.Самодельные кроссоверы для акустики и их предназначение), как его еще называют, сегодня выполняет важнейшую функцию. Дело в том, что практически все современные динамики, включая и сабвуфер, воспроизводят эффективно только определенную долю частот. К примеру, тот же басовик воспроизводить хорошо в состоянии только низкие басы.

Фильтр для автомобильного сабвуфера

За границами «родной» полосы (эффективно воспроизводимой), звуковое давления, идущее из динамика, заметно снижается и возрастает одновременно с этим уровень искажений. В таком случае говорить о каком-то качестве звука просто глупо и следовательно, чтобы решить проблему, приходится использовать в аудиосистеме несколько динамиков(см.Как выбрать динамики для автомагнитолы своими силами). Такова реалия: это происходит и в домашней акустике, и в автомобильной. Это не новость.

Типичные схемы расположения динамиков в авто и роль фильтров

Динамики в авто

Касательно автомобильной акустики хотелось бы выделить две типичные схемы построения системы звука, с которыми знакомы, наверное, все, кто много мало знаком с автозвуком.Речь идет о следующих схемах:

Наиболее популярная схема подразумевает три динамика. Это басовик (нацеленный исключительно на низы), динамик средних и низких частот (мидбасс) и отвечающий за воспроизведение ВЧ, твитер.

Фильтр низких частот сделать самому для сабвуфера

Именно для того, чтобы не нарушать это требование, предназначены электрические фильтры, в роль которых входит выделение конкретных «родных» частот и подавление «чужих».

Типы фильтров

Фильтры(см.Как сделать самому фильтр для автомагнитолы) частот различаются по типам.Принято выделять следующие варианты:

Обычные фильтры, принцип действия которых сводится к тому, чтобы у их катушек индуктивности сопротивление возрастало с ростом частоты сигнала и спадало у конденсаторов, которыми они наделены. Несложно догадаться, что в таких фильтрах эффективно пропускают НЧ катушки индуктивности, а ВЧ – конденсаторы.

Полосовой фильтр

  • Режекторный фильтр – полная противоположность полосовому. Здесь та полоса, которая ПФ пропускается без изменений, подавляется, а полосы вне этого интервала усиливаются;
  • ФИНЧ или фильтр подавления инфранизких частот стоит особняком. Принцип его действия основывается на подавлении высоких частот с низким показателем среза (10-30Гц). Предназначение этого фильтра – непосредственная защита басовика.

Нч фильтр для сабвуфера самому

Параметры

Кроме типов фильтров, принято разделять и их параметры.К примеру такой параметр, как порядок, свидетельствует о количестве катушек и конденсаторов (реактивных элементов):

  • 1-ый порядок содержит только один элемент;
  • 2-ой порядок два элемента и т.д.

Другой, не менее важный показатель – крутизна спада АЧХ, показывающая, насколько резко фильтр подавляет «чужие» сигналы.

Для сабвуфера

В принципе, любой фильтр, в том числе и этот, представляет собой сочетание нескольких элементов. Обладают компоненты эти свойством избирательно пропускать сигналы определенных частот. Принято разделять три популярные схемы этого разделителя для басовика.Они представлены ниже:

Первая схема подразумевает самый простой разделитель (изготовить который своими руками, не составит никакой сложности). Он выполнен в виде сумматора и стоит на одном транзисторе. Конечно, серьезного качества звука с таким простейшим фильтром не добиться, но из-за своей простоты, он прекрасно подходит любителям и начинающим радиоманам;

Простая схема

Две другие схемы намного сложны, чем первая. Построенные по эти схемам элементы, размещаются между местом выхода сигнала и входом усилителя басовика.

Каким бы ни был разделитель, простейшим или сложным, он должен иметь следующие технические характеристики.

Питание/напряжение 12-35 В
Частота среза 100 Гц
Потребление тока 5 мА
Усиление «родной» частотной полосы 6 дБ
Подавление «чужой» полосы 12 дБ
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector